Senin, 30 Januari 2012

ORGANISASI SEL 2

ORGANEL SEL
Retikulum Endoplasma merupakan bagian sel yang terdiri atas sistem membran. Di sekitar Retikulum Endoplasma adalah bagian sitoplasma yang disebut sitosol. Retikulum Endoplasma sendiri terdiri atas ruangan-ruangan kosong yang ditutupi dengan membran dengan ketebalan 4 nm (nanometer, 10-9 meter). Membran ini berhubungan langsung dengan selimut nukleus atau nuclear envelope.
Pada bagian-bagian Retikulum Endoplasma tertentu, terdapat ribuan ribosom atau ribosome. Ribosom merupakan tempat dimana proses pembentukan protein terjadi di dalam sel. Bagian ini disebut dengan Retikulum Endoplasma Kasar atau Rough Endoplasmic Reticulum. Kegunaan daripada Retikulum Endoplasma Kasar adalah untuk mengisolir dan membawa protein tersebut ke bagian-bagian sel lainnya. Kebanyakan protein tersebut tidak diperlukan sel dalam jumlah banyak dan biasanya akan dikeluarkan dari sel. Contoh protein tersebut adalah enzim dan hormon.
Sedangkan bagian-bagian Retikulum Endoplasma yang tidak diselimuti oleh ribosom disebut Retikulum Endoplasma Halus atau Smooth Endoplasmic Reticulum. Kegunaannya adalah untuk membentuk lemak dan steroid. Sel-sel yang sebagian besar terdiri dari Retikulum Endoplasma Halus terdapat di beberapa organ seperti hati.
Retikulum endoplasma memiliki struktur yang menyerupai kantung berlapis-lapis. Kantung ini disebut cisternae. Fungsi retikulum endoplasma bervariasi, tergantung pada jenisnya. Retikulum Endoplasma (RE) merupakan labirin membran yang demikian banyak sehingga retikulum endoplasma melipiti separuh lebih dari total membran dalam sel-sel eukariotik. (kata endoplasmik berarti “di dalam sitoplasma” dan retikulum diturunkan dari bahasa latin yang berarti “jaringan”).
Pengertian lain menyebutkan bahwa RE sebagai perluasan membran yang saling berhubungan yang membentuk saluran pipih atau lubang seperti tabung di dalam sitoplsma.
Lubang/saluran tersebut berfungsi membantu gerakan substansi-substansi dari satu bagian sel ke bagian sel lainnya.
Ada tiga jenis retikulum endoplasma:
1.    RE kasar Di permukaan RE kasar, terdapat bintik-bintik yang merupakan ribosom. Ribosom ini berperan dalam sintesis protein. Maka, fungsi utama RE kasar adalah sebagai tempat sintesis protein.
2.    RE halus Berbeda dari RE kasar, RE halus tidak memiliki bintik-bintik ribosom di permukaannya. RE halus berfungsi dalam beberapa proses metabolisme yaitu sintesis lipid, metabolisme karbohidrat dan konsentrasi kalsium, detoksifikasi obat-obatan, dan tempat melekatnya reseptor pada protein membran sel.
3.    RE sarkoplasmik RE sarkoplasmik adalah jenis khusus dari RE halus. RE sarkoplasmik ini ditemukan pada otot licin dan otot lurik. Yang membedakan RE sarkoplasmik dari RE halus adalah kandungan proteinnya. RE halus mensintesis molekul, sementara RE sarkoplasmik menyimpan dan memompa ion kalsium. RE sarkoplasmik berperan dalam pemicuan kontraksi otot.
RE halus berfungsi dalam berbagai macam proses metabolisme, trmasuk sintesis lipid, metabolisme karbohidrat, dan menawarkan obat dan racun
"RE berfungsi sebagai alat transportasi zat-zat di dalam sel itu sendiri"
Jaring-jaring endoplasma adalah jaringan keping kecil-kecil yang tersebar bebas di antara selaput selaput di seluruh sitoplasma dan membentuk saluran pengangkut bahan. Jaring-jaring ini biasanya berhubungan dengan ribosom (titik-titik merah) yang terdiri dari protein dan asam nukleat, atau RNA. Partikel-partikel tadi mensintesis protein serta menerima perintah melalui RNA tersebut (Time Life, 1984).
Jadi fungsi RE adalah mendukung sintesis protein dan menyalurkan bahan genetic antara inti sel dengan sitoplasma.

Fungsi Retikulum Endoplasma
·      Menjadi tempat penyimpan Calcium, bila sel berkontraksi maka calcium akan dikeluarkan dari RE dan menuju ke sitosol
·      Memodifikasi protein yang disintesis oleh ribosom untuk disalurkan ke kompleks golgi dan akhirnya dikeluarkan dari sel.
·      (RE kasar)
·      Mensintesis lemak dan kolesterol, ini terjadi di hati
·      (RE kasar dan RE halus)
·      Menetralkan racun (detoksifikasi) misalnya RE yang ada di dalam sel-sel hati.
·      Transportasi molekul-molekul dan bagian sel yang satu ke bagian sel yang lain (RE kasar dan RE halus)

NUKLEUS
Inti sel merupakan pusat pengetur berbagai aktifitas sel. Nukleus mengandung DNA dalam jumlah yang besar yang disebut Gen. Gen yang terdapat pada kromosom berfungsi untuk sintesa RNA yang mengatur karateristik dari protein yang diperlukan untuk berbagai aktifitas enzimatik serta mengatur reproduksi sel. Inti sel terdiri atas nukleolus, nukleoplasma dan membran inti sel.
Membran dari inti sel  terdiri 2 lapis, dimana lapisan luar berhubungan dengan membran retikulum endoplasma. Pada membran inti sel terdapat porus yang mempunyai diameter yang cukup besar sehingga dapat dilalui oleh molekul protein yang disintesa dalam inti sel.
Pada nukleoplasma terdapat nukleoli yang tidak mengandung membran. Nukleolus mengandung banyak RNA dan protein, dan ukurannya bertambah besar bila sedang aktif mensintesa protein. Gen mengatur sintesa protein dan RNA dan menyimpannya dalam nukleolus. RNA dan protein ini akan ditransport keluar menuju sitoplasma melalui porus yang terdapat pada membran inti sel.
DNA yang terdapat pada kromoson merupakan struktur double stranded yang terdiri dari :
1.    Gugus fosfatbeda ini
2.    Gugus pentose (gula) yaitu deoksiribosa
3.    Basa nitrogen yaitu purine : adenine, guanine, pirimidine,  sitosine dan thymine.
Gugus posfat dan pentose membentuk struktur fisik DNA, sedangkan 4 basa yang berbeda ini membawa informasi genetik. Pada DNA, adenin selalu berikatan dengan thymine dan guanin selalu terikat dengan sitosine.
Karena DNA berlokasi pada inti sel sedang hampir semua aktifitas sel terjadi pada sitoplasma, maka dibentuklah RNA yang dapat berdifusi menuju sitoplasma untuk mengatur sintesa protein yang spesifik. Proses pembentukan RNA diatur oleh DNA melalui proses transkripsi.
Perbedaan struktur RNA dari DNA adalah bahwa pada RNA pentosenya adalah ribosa dan gugus basa yang berikatan dengan adenin adalah urasil (tidak ada thymine) Proses pembentukan RNA terjadi di bawah pengaruh enzim RNA polymerase. Setelah dibentuk RNA akan dilepas ke nukleoplasma. Terdapat 3 jenis RNA yang dibentuk oleh DNA, dimana tiap jenis RNA mempunyai fungsi yang berbeda yaitu :
1.    Messenger RNA (mRNA), berfungsi membawa kode genetik ke sitoplasma untuk mengatur sintesa protein.
2.    Transfer RNA (tRNA) untuk transport asam amino menuju ribosom untuk digunakan menyusun molekul protein.
3.        Ribosomal RNA (rRNA) untuk membentuk ribosom bersama dengan 75 protein lainnya.

Bila molekul mRNA kontak dengan ribosom, maka akan dibentuklah molekul protein disepanjang ribosom. Proses pembentukan molekul ini disebut translasi. Jadi pada ribosom terjadi proses kimia penyusunan asam amino untuk membentuk protein.

BADAN GOLGI
Struktur golgi berupa berkas kantung berbentuk cakram yang bercabang menjadi serangkaian pembuluh yang sangat kecil di ujungnya. Karena hubungannya dengan fungsi pengeluaran sel amat erat, pembuluh mengumpulkan dan membungkus karbohidrat serta zat-zat lain untuk diangkut ke permukaan sel. Pembuluh itu juga menyumbang bahan bagi pembentukan dinding sel. (Sumber : Time Life, 1984)
Pengertian lain menyebutkan, Badan golgi adalah sekelompok kantong (vesikula) pipih yang dikelilingi membran. Organel ini hampir terdapat di semua sel eukariotik. Setiap sel hewan memiliki 10 hingga 20 badan golgi, Organel ini dihubungkan dengan fungsi ekskresi sel. Organel ini banyak dijumpai pada organ tubuh yang melaksanakan fungsi ekskresi, misalnya ginjal.
Sedang pada sel tumbuhan memiliki hingga ratusan badan golgi pada setiap selnya. Golgi pada tumbuhan biasanya disebut diktiosom. Badan golgi dibangun oleh membran yang berbentuk tubulus dan juga vesikula. Dari tubulus dilepaskan kantung-kantung kecil yang berisi bahan-bahan yang diperlukan seperti enzim–enzim pembentuk dinding sel.
Fungsi badan golgi:
1.    Membentuk kantung (vesikula) untuk sekresi. Terjadi terutama pada sel-sel kelenjar kantung kecil tersebut, berisi enzim dan bahan-bahan lain.
2.    Membentuk membran plasma. Kantung atau membran golgi sama seperti membran plasma. Kantung yang dilepaskan dapat menjadi bagian dari membrane plasma.
3.    Membentuk dinding sel tumbuhan
4.    Fungsi lain ialah dapat membentuk akrosom pada spermatozoa yang berisi enzim untuk memecah dinding sel telur dan pembentukan lisosom.

MITOKONDRIA
Mitokondria, kondriosom (bahasa Inggris: chondriosome, mitochondrion, plural:mitochondria) adalah organel tempat berlangsungnya fungsi respirasi sel makhluk hidup, selain fungsi selular lain, seperti metabolisme asam lemak, biosintesis pirimidina, homeostasis kalsium, transduksi sinyal selular dan penghasil energi[1] berupa adenosina trifosfat pada lintasan katabolisme.
Mitokondria mempunyai dua lapisan membran, yaitu lapisan membran luar dan lapisan membran dalam. Lapisan membran dalam ada dalam bentuk lipatan-lipatan yang sering disebut dengan cristae. Di dalam Mitokondria terdapat 'ruangan' yang disebut matriks, dimana beberapa mineral dapat ditemukan. Sel yang mempunyai banyak Mitokondria dapat dijumpai di jantung, hati, dan otot.
Terdapat hipotesis bahwa mitokondria merupakan organel hasil evolusi dari sel α-proteobacteria prokariota yang ber-endosimbiosis dengan sel eukariota.[2] Hipotesis ini didukung oleh beberapa fakta antara lain,
·       adanya DNA di dalam mitokondria menunjukkan bahwa dahulu mitokondria merupakan entitas yang terpisah dari sel inangnya,
·       beberapa kemiripan antara mitokondria dan bakteri, baik ukuran maupun cara reproduksi dengan membelah diri, juga struktur DNA yang berbentuk lingkaran.
Oleh karena itu, mitokondria memiliki sistem genetik sendiri yang berbeda dengan sistem genetik inti. Selain itu, ribosom dan rRNA mitokondria lebih mirip dengan yang dimiliki bakteri dibandingkan dengan yang dikode oleh inti sel eukariot [Cooper, 2000].
Secara garis besar, tahap respirasi pada tumbuhan dan hewan melewati jalur yang sama, yang dikenal sebagai daur atau siklus Krebs.

KLOROPLAS
Kloroplas adalah plastida yang berwarna hijau, umumnya berbentuk lensa, terdapat dalam sel tumbuhan lumut (Bryophyta), paku-pakuan (Pterydophyta) dan tumbuhan berbiji (Spermatophyta). Garis tengah lensa tersebut 2-6 milimikron, sedangkan tebalnya 0,5-1,0 milimikron. Kloroplas terdapat pada hampir seluruh tumbuhan, tetapi tidak umum dalam semua sel. Bila ada, maka tiap sel dapat memiliki satu sampai banyak plastida . Plastida adalah organel bermembran rangkap yang bentuk dan fungsinya bermacam-macam. Proplastida merupakan prekursor berbagai macam plastida dalam jaringan tanaman, tergantung pada macam jaringan dan macam lingkungan yang berpengaruh, proplastida berdiferensiasi menjadi plastida yang berbeda.
Pengamatan dengan mikroskop cahaya, dengan pembesaran yang paling kuat, kloroplast terlihat berbentuk butir. Pada tumbuhan tingkat tinggi umumnya plastida berbentuk cakram (kira-kira 2 x 5 mm, kadang-kadang lebih besar), tersusun dalam lapisan tunggal dalam sitoplasma tetapi bentuk dan posisinya berubah-ubah sesuai dengan intensitas cahaya. Pada ganggang, bentuknya dapat seperti mangkuk, spiral, bintang menyerupai jaring, seringkali disertai pirenoid. Kloroplas matang pada beberapa ganggang, bryophyta dan lycopodium dapat memperbanyak diri dengan pembelahan. Kesinambungan kloroplas terjadi melalui pertumbuhan dan pembelahan proplastid di daerah meristem. Bentuk kloroplast yang beraneka ragam ditemukan pada alga. Kloroplast bernbentuk pita spiral ditemukan pada Spirogyra, sedangkan yang berbentuk jala ditemukan pada Cladophora, sedangkan kloroplast berbentuk pita ditemukan pada Zygnema.
Kloroplas dijumpai terutama pada bagian daun yang disebut mesofil, yang sering disebut pula daging daun. Kloroplas juga dijumpai di bagian-bagian lain, bahkan juga pada batang dan ranting yang berwarna hijau. Hal ini disebabkan karena dalam kloroplas terdapat pigmen yang berwarna hijau disebut klorofil. Pigmen ini dapat menyerap energi cahaya. Klorofil terdapat pada membran tilakoid dan perubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedangkan pembentukan glukosa sebagai produk akhir fotosintesis berlangsung di stroma. Disamping klorofil a ( pigmen berwarna hijau ) dikenal pula klorofil b yang mempunyai struktur mirip klorofil a, yaitu pigmen yang berwarna kuning sampai jingga yang disebut karoten.
Seperti halnya mitokondria, kloroplas dikelilingi oleh membran luar dan membran dalam. Seperti membran luar pada mitokondria, membran luar kloroplas juga mengandung porin yang menyebabkan membran ini permeable terhadap molekul dengan ukuran 10.000 dalton. Sebaliknya membran dalam relatif lebih impermeabel. Membran dalam menutupi daerah yang berisi cairan yang disebut stroma yang mengandung enzim untuk reaksi terang pada proses fotosintesis. Stroma juga mengandung DNA dan ribosom. Pelipatan membran dalam membentuk struktur seperti tumpukan piringan yang saling berhubungan yang disebut tilakoid yang tersusun membentuk grana. Membran tilakoid yang mengelilingi ruang interior tilakoid yang berisi cairan mengandung klorofil dan pigmen fotosintesis lain serta rantai transport elektron. Reaksi terang dari fotosintesis terjadi di tilakoid. Membran luar kloroplas menutupi ruang intermembran antara membran dalam dan membran luar kloroplas. Seperti pada matriks mitokondria, stroma kloroplas mengandung molekul DNA sirkuler dan ribosom. Diperkirakan pula terdapat sekitar 60 macam polipeptida pada membran tilakoid. Setengah diantaranya dikode oleh DNA kloroplas. Sebagian besar protein dalam kloroplas dikode oleh gen nuklear, dihasilkan di sitoplasma dan selanjutnya dikirim ke kloroplas.

  Jalur Fotosintesis

Reaksi Terang
Fotosintesis pada organisme fotosintetik terjadi dalam 2 tahap yaitu reaksi terang dan reaksi gelap. Pada reaksi terang, klorofil dan pigmen menyerap energi matahari yang kemudian diubah menjadi bentuk energi kimia yaitu ATP dan senyawa pereduksi NADPH.                                               
Reaksi terang dalam proses fotosintesis menggunakan dua fotosistem sebagai akseptor proton, yaitu Fotosistem I dan Fotosistem II.
Absorpsi cahaya matahari akan mengeksitasi elektron. Sinar cahaya matahari yang nampak adalah radiasi elektromagnetik dengan panjang gelombang antara 400-700 nm. Cahaya matahari ditimbulkan oleh fusi inti atom hidrogen membentuk atom helium dan elektron. Kemampuan suatu senyawa kimia untuk menyerap cahaya bergantung pada susunan elektron yang ada di sekeliling inti atom pada struktur senyawa tersebut. Bilamana foton diserap oleh suatu molekul, elektron dinaikkan ke tingkat energi yang lebih tinggi, melompat menuju molekul pembawa elektron yang pertama. Jika molekul klorofil pada membran tilakoid dieksitasi oleh cahaya, tingkat energi elektron di dalam strukturnya ditingkatkan oleh sejumlah ekuivalen energi cahaya yang diserap dan klorofilpun tereksitasi. Energi eksitasi ini akan berpindah dengan cepat melalui kelompok molekul pigmen penangkap cahaya ke pusat reaksi fotosistem. Di sini elektron memperoleh energi dalam jumlah besar. Elektron yang panas ini akan dikeluarkan daqri pusat reaksi dan diterima oleh molekul pembawa elektron yang pertama. Akibatnya molekul pembawa elektron yang pertama ini akan menjadi tereduksi atau dengan kata lain menerima elektron. Sedangkan pusat reaksinya kehilangan elektron sehingga meninggalkan lubang elektron. Elektron yang kaya energi akan terus dibawa oleh molekul pembawa elektron menuju NADP+ yang direduksi menjadi NADPH. Sementara itu, lubang elektron yang terbentuk karena eksitasi elektron akan diisi kembali oleh eletron yang berasal dari fotosistem II. Dalam hal ini, pada fotosistem II juga akan meninggalkan lubang elektron sehingga kekosongan tempat ini akan diisi oleh elektron yang berasal dari fotolisis air.
Fotosistem I merupakan satu partikel yang disusun oleh sekitar 200 molekul klorofil-a, 50 klorofil-b, 50 sampai 200 pigmen karoteroid, dan satu molekul penerima cahaya matahari yang disebut P700. Pada fotosistem I terjadi penyerapan energi matahari pada panjang gelombang sekitar 700 nm. Bagian kedua yang menyangkut penyerapan energi matahari pada panjang gelombang di sekitar 680 nm, disebut fotosistem II, melibatkan proses pembentukan O2 dan H2O . Fotosistem II banyak menggunakan klorofil-b.
Fotsistem I dan II merupakan komponen penyalur energi dalam rantai pengangkutan elektron fotoseintesis secara berlanjut dari molekul air sebagai donor elektron ke NADP+ sebagai akseptor elektron. 
Lepasnya satu elektron dari P700 mengakibatkan berubahnya molekul menjadi bentuk teroksidasinya P700+ yang kekurangan satu elektron.  Untuk mengisi kekurangan itu satu elektron dialiri melalui sederetan molekul pembawa elektron dari molekul pembawa elektron, dari molekul P680 dalam fosistem II, pengaliran elektron hanya terjadi setelah terjadinya penyinaran terhadap fotosistem II yaitu tereksistasinya P680 yang segera melepaskan eelektron ke molekul penerima elektron pertama. Ini mengakibatakan teroksidasinya bentuk P680 menjadi menjadi P680+. Kekurangan elektron pada P680+ dipenuhi dari reaksi oksidasi molekul H2O menjadi  O2.
Energi yang diperoleh dari transport elektron fotosintetik dari H2O ke NADP+ akan mengahsilkan energi dalam bentuk NADPH. Aliran elektron yang terjadi disebut aliran nonsiklik yang melibatkan fotosistem I dan fotosistem II.
Bentuk energi lain yaitu yang berupa ATP dihasilkan dari aliran elektron siklik dimana elektron ditingkatkan ke penerima elektron pertama menuju lubang elektron fotosistem I melalui jalan pintas. Dalam hal ini, elektron berdaur terus menerus dalam keluar pusat reaksi fotosistem I dan masuk kembali ke dalamnya. Sehingga, dalam proses ini tidak ada pembentukan NADPH maupun pembebasan oksigen melainkan akan menghasilkan ATP. Aliran siklik terjadi apabila tanaman khususnya lebih banyak memerlukan ATP daripada NADPH.

Reaksi Gelap

Fotosintesis Tumbuhan C4 Dan CAM
Pada tumbuhan C4 adalah tumbuhan yang pada fase reaksi gelap menambat CO2 menjadi asam malat dan asam aspartat 4-carbon. Setelah fotosintesis  dalam 14C2 berlangsung sekitar 1 detik, 80% 14C yang tertambat berada dalam kedua asam tersebut dan hanya 10 % dalam PGA, hal ini menunjukkan bahwa 3-PGA bukan produk pertama fotosintesis. Sebagin besar spesies C4 adalah monokotil, jagung dan tebu. Tumbuhan C4 ini pada suhu panas dan penyinaran tinggi mampu berfotosintesis lebih cepat dan menghasilkan biomassa lebih cepat.

Reaksi perubahan CO2 (sebenarnya HCO3- ) menjadi asam malat dan asam aspartat 4-carbon terjadi mula-mula melalui penggabungan awal dengan pospoenolpiruvat(PEP) untuk membentuk oksaloasetat dan Pi, reaksi ini terjadi di mesofil daun dan sikatalisis oleh pospoenolpiruvat karboksilase. Oksaloasetat dibentuk pada sel mesofil yang kemudian direduksi menjadi malat dengan pemanfaatan NADPH. Malat kemudian ditransfer dalam sel pengangkut lalu didekaobosilasi menghasilkan piruvat dan CO2 . Piruvat yang ditransfer ke sel mesofil dan dikonversi menjadi fosfoenolpiruvat dikataklisis oleh enzim piruvat-fosfat kinase. CO2  yang terbentuk diikat oleh ribosadifosfat klarboksilaase melaui jalur calvin di kolroplas seludang berkas. Setelah dekarbosilasi asam C4, molekul piruivat dan alanin diangkut balik ke sel mesofil, tempat dimana diubah menjajdi PEP sehingga penambatan CO2 dapat berlangsung terus.

Pada tumbuhan sekulen seperti kaktus dan nanas yang hidup di lingkungan yang panas dan kering, melakukan fiksasi  CO2 yang berbeda dengan tumbuhan C4, tumbuhan ini hanya menguapkan sedikit uap air melalui stomata bersama dengan pelepasan O2 dan pengikatan CO2. Pada malam hari ketika suhu udara dingin dan berangin, stomata membuka untuk mengangkap CO2 , kemudian diubah menjadi oxaloacetate oleh PEP carboxylase. Oksaloasetat diubah menjadi malat dan disimpan dio valuola, untukmelindungi  sitosol dan enzim plastid dari pH rendah dari disosiasi asam malat. Pada asiang hari stomata menutup, untuk mencegah penguapan yang berlebihan akibat temperature udara yang tinggi. Dan CO2 bereaksi pada malam hari menjadi malat oleh enzim malat  NADP-linked. CO2 ini berasimilasi di siklyus calvin dengan bantuan RuBP. Karena metode fiksasi COpertama kali ditemukan pada tumbuhan familia Crassulaceae , maka CAM adalah singkatan dari  crassulacean acid metabolism .

VAKUOLA
Vakuola merupakan ruang dalam sel yang berisi cairan (cell sap dalam bahasa Inggris)yang berupa rongga yang diselaputi membran (tonoplas). Cairan ini adalah air dan berbagai zat yang terlarut di dalamnya. Selain itu, Vakuola juga berisi asam organik, asam amino, glukosa, gas, garam-garam kristal, alkaloid. Vakuola ditemukan pada semua sel tumbuhan namun tidak dijumpai pada sel hewan dan bakteri, kecuali pada hewan uniseluler tingkat rendah.
Vakuola terbagi menjadi 2 jenis, yaitu Vakuola Kontraktil dan Vakuola nonkontraktil (vakuola makanan). Vakuola kontraktil berufngsi sebagai osmoregulator yaitu pengatur nilai osmotik sel atau ekskresi. Vakuola nonkontraktil berfungsi untuk mencerna makanan dan mengedarkan hasil makanan.
Pada sel daun dewasa, vakuola mendominasi sebagian besar ruang sel sehingga seringkali sel terlihat sebagai ruang kosong karena sitosol terdesak ke bagian tepi dari sel.
Fungsi Vakuola:
1.        Tempat penyimpanan zat cadangan makanan seperti amilum dan glukosa
2.        Tempat menyimpan pigmen (daun, bunga dan buah)
3.        Tempat penyimpanan minyak atsirik (golongan minyak yang memberikan bau khas seperti minyak kayu putih)
4.        Mengatur tirgiditas sel (tekanan osmotik sel)
5.        Tempat penimbunan sisa metabolisme dan metabolik sekunder seperti getah karet, alkaloid, tanin, dan kalsium oksabit
Bagi tumbuhan, vakuola berperan sangat penting dalam kehidupan karena mekanisme pertahanan hidupnya bergantung pada kemampuan vakuola menjaga konsentrasi zat-zat terlarut di dalamnya. Proses pelayuan, misalnya, terjadi karena vakuola kehilangan tekanan turgor pada dinding sel. Dalam vakuola terkumpul pula sebagian besar bahan-bahan berbahaya bagi proses metabolisme dalam sel karena tumbuhan tidak mempunyai sistem ekskresi yang efektif seperti pada hewan. Tanpa vakuola, proses kehidupan pada sel akan berhenti karena terjadi kekacauan reaksi biokimia.

Tidak ada komentar:

Posting Komentar